Step |
Hyp |
Ref |
Expression |
1 |
|
dfbi2 |
⊢ ( ( if- ( 𝜑 , 𝜒 , 𝜃 ) ↔ if- ( 𝜓 , 𝜒 , 𝜃 ) ) ↔ ( ( if- ( 𝜑 , 𝜒 , 𝜃 ) → if- ( 𝜓 , 𝜒 , 𝜃 ) ) ∧ ( if- ( 𝜓 , 𝜒 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜃 ) ) ) ) |
2 |
|
ifpim1g |
⊢ ( ( if- ( 𝜑 , 𝜒 , 𝜃 ) → if- ( 𝜓 , 𝜒 , 𝜃 ) ) ↔ ( ( ( 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ∧ ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ) ) |
3 |
2
|
biancomi |
⊢ ( ( if- ( 𝜑 , 𝜒 , 𝜃 ) → if- ( 𝜓 , 𝜒 , 𝜃 ) ) ↔ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ) |
4 |
|
ifpim1g |
⊢ ( ( if- ( 𝜓 , 𝜒 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜃 ) ) ↔ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜃 → 𝜒 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜒 → 𝜃 ) ) ) ) |
5 |
3 4
|
anbi12i |
⊢ ( ( ( if- ( 𝜑 , 𝜒 , 𝜃 ) → if- ( 𝜓 , 𝜒 , 𝜃 ) ) ∧ ( if- ( 𝜓 , 𝜒 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜃 ) ) ) ↔ ( ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜃 → 𝜒 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜒 → 𝜃 ) ) ) ) ) |
6 |
|
an42 |
⊢ ( ( ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜃 → 𝜒 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜒 → 𝜃 ) ) ) ) ↔ ( ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜑 → 𝜓 ) ∨ ( 𝜃 → 𝜒 ) ) ) ∧ ( ( ( 𝜓 → 𝜑 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ) ) |
7 |
1 5 6
|
3bitri |
⊢ ( ( if- ( 𝜑 , 𝜒 , 𝜃 ) ↔ if- ( 𝜓 , 𝜒 , 𝜃 ) ) ↔ ( ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜑 → 𝜓 ) ∨ ( 𝜃 → 𝜒 ) ) ) ∧ ( ( ( 𝜓 → 𝜑 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ) ) |