Metamath Proof Explorer


Theorem ifp1bi

Description: Substitute the first element of conditional logical operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifp1bi if-φχθif-ψχθφψχθφψθχψφχθψφθχ

Proof

Step Hyp Ref Expression
1 dfbi2 if-φχθif-ψχθif-φχθif-ψχθif-ψχθif-φχθ
2 ifpim1g if-φχθif-ψχθψφθχφψχθ
3 2 biancomi if-φχθif-ψχθφψχθψφθχ
4 ifpim1g if-ψχθif-φχθφψθχψφχθ
5 3 4 anbi12i if-φχθif-ψχθif-ψχθif-φχθφψχθψφθχφψθχψφχθ
6 an42 φψχθψφθχφψθχψφχθφψχθφψθχψφχθψφθχ
7 1 5 6 3bitri if-φχθif-ψχθφψχθφψθχψφχθψφθχ