Step |
Hyp |
Ref |
Expression |
1 |
|
dfbi2 |
|- ( ( if- ( ph , ch , th ) <-> if- ( ps , ch , th ) ) <-> ( ( if- ( ph , ch , th ) -> if- ( ps , ch , th ) ) /\ ( if- ( ps , ch , th ) -> if- ( ph , ch , th ) ) ) ) |
2 |
|
ifpim1g |
|- ( ( if- ( ph , ch , th ) -> if- ( ps , ch , th ) ) <-> ( ( ( ps -> ph ) \/ ( th -> ch ) ) /\ ( ( ph -> ps ) \/ ( ch -> th ) ) ) ) |
3 |
2
|
biancomi |
|- ( ( if- ( ph , ch , th ) -> if- ( ps , ch , th ) ) <-> ( ( ( ph -> ps ) \/ ( ch -> th ) ) /\ ( ( ps -> ph ) \/ ( th -> ch ) ) ) ) |
4 |
|
ifpim1g |
|- ( ( if- ( ps , ch , th ) -> if- ( ph , ch , th ) ) <-> ( ( ( ph -> ps ) \/ ( th -> ch ) ) /\ ( ( ps -> ph ) \/ ( ch -> th ) ) ) ) |
5 |
3 4
|
anbi12i |
|- ( ( ( if- ( ph , ch , th ) -> if- ( ps , ch , th ) ) /\ ( if- ( ps , ch , th ) -> if- ( ph , ch , th ) ) ) <-> ( ( ( ( ph -> ps ) \/ ( ch -> th ) ) /\ ( ( ps -> ph ) \/ ( th -> ch ) ) ) /\ ( ( ( ph -> ps ) \/ ( th -> ch ) ) /\ ( ( ps -> ph ) \/ ( ch -> th ) ) ) ) ) |
6 |
|
an42 |
|- ( ( ( ( ( ph -> ps ) \/ ( ch -> th ) ) /\ ( ( ps -> ph ) \/ ( th -> ch ) ) ) /\ ( ( ( ph -> ps ) \/ ( th -> ch ) ) /\ ( ( ps -> ph ) \/ ( ch -> th ) ) ) ) <-> ( ( ( ( ph -> ps ) \/ ( ch -> th ) ) /\ ( ( ph -> ps ) \/ ( th -> ch ) ) ) /\ ( ( ( ps -> ph ) \/ ( ch -> th ) ) /\ ( ( ps -> ph ) \/ ( th -> ch ) ) ) ) ) |
7 |
1 5 6
|
3bitri |
|- ( ( if- ( ph , ch , th ) <-> if- ( ps , ch , th ) ) <-> ( ( ( ( ph -> ps ) \/ ( ch -> th ) ) /\ ( ( ph -> ps ) \/ ( th -> ch ) ) ) /\ ( ( ( ps -> ph ) \/ ( ch -> th ) ) /\ ( ( ps -> ph ) \/ ( th -> ch ) ) ) ) ) |