Step |
Hyp |
Ref |
Expression |
1 |
|
ifpim123g |
|- ( ( if- ( ph , ch , th ) -> if- ( ps , ch , th ) ) <-> ( ( ( ( ph -> -. ps ) \/ ( ch -> ch ) ) /\ ( ( ps -> ph ) \/ ( th -> ch ) ) ) /\ ( ( ( ph -> ps ) \/ ( ch -> th ) ) /\ ( ( -. ps -> ph ) \/ ( th -> th ) ) ) ) ) |
2 |
|
id |
|- ( ch -> ch ) |
3 |
2
|
olci |
|- ( ( ph -> -. ps ) \/ ( ch -> ch ) ) |
4 |
3
|
biantrur |
|- ( ( ( ps -> ph ) \/ ( th -> ch ) ) <-> ( ( ( ph -> -. ps ) \/ ( ch -> ch ) ) /\ ( ( ps -> ph ) \/ ( th -> ch ) ) ) ) |
5 |
4
|
bicomi |
|- ( ( ( ( ph -> -. ps ) \/ ( ch -> ch ) ) /\ ( ( ps -> ph ) \/ ( th -> ch ) ) ) <-> ( ( ps -> ph ) \/ ( th -> ch ) ) ) |
6 |
|
id |
|- ( th -> th ) |
7 |
6
|
olci |
|- ( ( -. ps -> ph ) \/ ( th -> th ) ) |
8 |
7
|
biantru |
|- ( ( ( ph -> ps ) \/ ( ch -> th ) ) <-> ( ( ( ph -> ps ) \/ ( ch -> th ) ) /\ ( ( -. ps -> ph ) \/ ( th -> th ) ) ) ) |
9 |
8
|
bicomi |
|- ( ( ( ( ph -> ps ) \/ ( ch -> th ) ) /\ ( ( -. ps -> ph ) \/ ( th -> th ) ) ) <-> ( ( ph -> ps ) \/ ( ch -> th ) ) ) |
10 |
5 9
|
anbi12i |
|- ( ( ( ( ( ph -> -. ps ) \/ ( ch -> ch ) ) /\ ( ( ps -> ph ) \/ ( th -> ch ) ) ) /\ ( ( ( ph -> ps ) \/ ( ch -> th ) ) /\ ( ( -. ps -> ph ) \/ ( th -> th ) ) ) ) <-> ( ( ( ps -> ph ) \/ ( th -> ch ) ) /\ ( ( ph -> ps ) \/ ( ch -> th ) ) ) ) |
11 |
1 10
|
bitri |
|- ( ( if- ( ph , ch , th ) -> if- ( ps , ch , th ) ) <-> ( ( ( ps -> ph ) \/ ( th -> ch ) ) /\ ( ( ph -> ps ) \/ ( ch -> th ) ) ) ) |