Step |
Hyp |
Ref |
Expression |
1 |
|
dfifp2 |
⊢ ( if- ( 𝜑 , ( 𝜓 ↔ 𝜒 ) , ( 𝜃 ↔ 𝜏 ) ) ↔ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ∧ ( ¬ 𝜑 → ( 𝜃 ↔ 𝜏 ) ) ) ) |
2 |
|
dfbi2 |
⊢ ( ( 𝜓 ↔ 𝜒 ) ↔ ( ( 𝜓 → 𝜒 ) ∧ ( 𝜒 → 𝜓 ) ) ) |
3 |
2
|
imbi2i |
⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( 𝜑 → ( ( 𝜓 → 𝜒 ) ∧ ( 𝜒 → 𝜓 ) ) ) ) |
4 |
|
jcab |
⊢ ( ( 𝜑 → ( ( 𝜓 → 𝜒 ) ∧ ( 𝜒 → 𝜓 ) ) ) ↔ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ∧ ( 𝜑 → ( 𝜒 → 𝜓 ) ) ) ) |
5 |
3 4
|
bitri |
⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ∧ ( 𝜑 → ( 𝜒 → 𝜓 ) ) ) ) |
6 |
|
dfbi2 |
⊢ ( ( 𝜃 ↔ 𝜏 ) ↔ ( ( 𝜃 → 𝜏 ) ∧ ( 𝜏 → 𝜃 ) ) ) |
7 |
6
|
imbi2i |
⊢ ( ( ¬ 𝜑 → ( 𝜃 ↔ 𝜏 ) ) ↔ ( ¬ 𝜑 → ( ( 𝜃 → 𝜏 ) ∧ ( 𝜏 → 𝜃 ) ) ) ) |
8 |
|
jcab |
⊢ ( ( ¬ 𝜑 → ( ( 𝜃 → 𝜏 ) ∧ ( 𝜏 → 𝜃 ) ) ) ↔ ( ( ¬ 𝜑 → ( 𝜃 → 𝜏 ) ) ∧ ( ¬ 𝜑 → ( 𝜏 → 𝜃 ) ) ) ) |
9 |
7 8
|
bitri |
⊢ ( ( ¬ 𝜑 → ( 𝜃 ↔ 𝜏 ) ) ↔ ( ( ¬ 𝜑 → ( 𝜃 → 𝜏 ) ) ∧ ( ¬ 𝜑 → ( 𝜏 → 𝜃 ) ) ) ) |
10 |
5 9
|
anbi12i |
⊢ ( ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ∧ ( ¬ 𝜑 → ( 𝜃 ↔ 𝜏 ) ) ) ↔ ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ∧ ( 𝜑 → ( 𝜒 → 𝜓 ) ) ) ∧ ( ( ¬ 𝜑 → ( 𝜃 → 𝜏 ) ) ∧ ( ¬ 𝜑 → ( 𝜏 → 𝜃 ) ) ) ) ) |
11 |
|
an4 |
⊢ ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ∧ ( 𝜑 → ( 𝜒 → 𝜓 ) ) ) ∧ ( ( ¬ 𝜑 → ( 𝜃 → 𝜏 ) ) ∧ ( ¬ 𝜑 → ( 𝜏 → 𝜃 ) ) ) ) ↔ ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ∧ ( ¬ 𝜑 → ( 𝜃 → 𝜏 ) ) ) ∧ ( ( 𝜑 → ( 𝜒 → 𝜓 ) ) ∧ ( ¬ 𝜑 → ( 𝜏 → 𝜃 ) ) ) ) ) |
12 |
10 11
|
bitri |
⊢ ( ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ∧ ( ¬ 𝜑 → ( 𝜃 ↔ 𝜏 ) ) ) ↔ ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ∧ ( ¬ 𝜑 → ( 𝜃 → 𝜏 ) ) ) ∧ ( ( 𝜑 → ( 𝜒 → 𝜓 ) ) ∧ ( ¬ 𝜑 → ( 𝜏 → 𝜃 ) ) ) ) ) |
13 |
|
dfifp2 |
⊢ ( if- ( 𝜑 , ( 𝜓 → 𝜒 ) , ( 𝜃 → 𝜏 ) ) ↔ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ∧ ( ¬ 𝜑 → ( 𝜃 → 𝜏 ) ) ) ) |
14 |
|
ifpimimb |
⊢ ( if- ( 𝜑 , ( 𝜓 → 𝜒 ) , ( 𝜃 → 𝜏 ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |
15 |
13 14
|
bitr3i |
⊢ ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ∧ ( ¬ 𝜑 → ( 𝜃 → 𝜏 ) ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |
16 |
|
dfifp2 |
⊢ ( if- ( 𝜑 , ( 𝜒 → 𝜓 ) , ( 𝜏 → 𝜃 ) ) ↔ ( ( 𝜑 → ( 𝜒 → 𝜓 ) ) ∧ ( ¬ 𝜑 → ( 𝜏 → 𝜃 ) ) ) ) |
17 |
|
ifpimimb |
⊢ ( if- ( 𝜑 , ( 𝜒 → 𝜓 ) , ( 𝜏 → 𝜃 ) ) ↔ ( if- ( 𝜑 , 𝜒 , 𝜏 ) → if- ( 𝜑 , 𝜓 , 𝜃 ) ) ) |
18 |
16 17
|
bitr3i |
⊢ ( ( ( 𝜑 → ( 𝜒 → 𝜓 ) ) ∧ ( ¬ 𝜑 → ( 𝜏 → 𝜃 ) ) ) ↔ ( if- ( 𝜑 , 𝜒 , 𝜏 ) → if- ( 𝜑 , 𝜓 , 𝜃 ) ) ) |
19 |
15 18
|
anbi12i |
⊢ ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ∧ ( ¬ 𝜑 → ( 𝜃 → 𝜏 ) ) ) ∧ ( ( 𝜑 → ( 𝜒 → 𝜓 ) ) ∧ ( ¬ 𝜑 → ( 𝜏 → 𝜃 ) ) ) ) ↔ ( ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ∧ ( if- ( 𝜑 , 𝜒 , 𝜏 ) → if- ( 𝜑 , 𝜓 , 𝜃 ) ) ) ) |
20 |
|
dfbi2 |
⊢ ( ( if- ( 𝜑 , 𝜓 , 𝜃 ) ↔ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ↔ ( ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ∧ ( if- ( 𝜑 , 𝜒 , 𝜏 ) → if- ( 𝜑 , 𝜓 , 𝜃 ) ) ) ) |
21 |
19 20
|
bitr4i |
⊢ ( ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ∧ ( ¬ 𝜑 → ( 𝜃 → 𝜏 ) ) ) ∧ ( ( 𝜑 → ( 𝜒 → 𝜓 ) ) ∧ ( ¬ 𝜑 → ( 𝜏 → 𝜃 ) ) ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜃 ) ↔ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |
22 |
1 12 21
|
3bitri |
⊢ ( if- ( 𝜑 , ( 𝜓 ↔ 𝜒 ) , ( 𝜃 ↔ 𝜏 ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜃 ) ↔ if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |