Step |
Hyp |
Ref |
Expression |
1 |
|
dfifp2 |
⊢ ( if- ( 𝜑 , ( 𝜓 → 𝜒 ) , ( 𝜃 → 𝜏 ) ) ↔ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ∧ ( ¬ 𝜑 → ( 𝜃 → 𝜏 ) ) ) ) |
2 |
|
imor |
⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( ¬ 𝜑 ∨ ( 𝜓 → 𝜒 ) ) ) |
3 |
|
pm4.8 |
⊢ ( ( 𝜑 → ¬ 𝜑 ) ↔ ¬ 𝜑 ) |
4 |
3
|
bicomi |
⊢ ( ¬ 𝜑 ↔ ( 𝜑 → ¬ 𝜑 ) ) |
5 |
4
|
orbi1i |
⊢ ( ( ¬ 𝜑 ∨ ( 𝜓 → 𝜒 ) ) ↔ ( ( 𝜑 → ¬ 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ) |
6 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
7 |
6
|
orci |
⊢ ( ( 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) |
8 |
7
|
biantru |
⊢ ( ( ( 𝜑 → ¬ 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ↔ ( ( ( 𝜑 → ¬ 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ) |
9 |
2 5 8
|
3bitri |
⊢ ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( ( ( 𝜑 → ¬ 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ) |
10 |
|
pm4.64 |
⊢ ( ( ¬ 𝜑 → ( 𝜃 → 𝜏 ) ) ↔ ( 𝜑 ∨ ( 𝜃 → 𝜏 ) ) ) |
11 |
|
pm4.81 |
⊢ ( ( ¬ 𝜑 → 𝜑 ) ↔ 𝜑 ) |
12 |
11
|
bicomi |
⊢ ( 𝜑 ↔ ( ¬ 𝜑 → 𝜑 ) ) |
13 |
12
|
orbi1i |
⊢ ( ( 𝜑 ∨ ( 𝜃 → 𝜏 ) ) ↔ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) |
14 |
6
|
orci |
⊢ ( ( 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜏 ) ) |
15 |
14
|
biantrur |
⊢ ( ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ↔ ( ( ( 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜏 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) ) |
16 |
10 13 15
|
3bitri |
⊢ ( ( ¬ 𝜑 → ( 𝜃 → 𝜏 ) ) ↔ ( ( ( 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜏 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) ) |
17 |
9 16
|
anbi12i |
⊢ ( ( ( 𝜑 → ( 𝜓 → 𝜒 ) ) ∧ ( ¬ 𝜑 → ( 𝜃 → 𝜏 ) ) ) ↔ ( ( ( ( 𝜑 → ¬ 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ∧ ( ( ( 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜏 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) ) ) |
18 |
|
ifpim123g |
⊢ ( ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ↔ ( ( ( ( 𝜑 → ¬ 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ∧ ( ( ( 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜏 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) ) ) |
19 |
18
|
bicomi |
⊢ ( ( ( ( ( 𝜑 → ¬ 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ∧ ( ( ( 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜏 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |
20 |
1 17 19
|
3bitri |
⊢ ( if- ( 𝜑 , ( 𝜓 → 𝜒 ) , ( 𝜃 → 𝜏 ) ) ↔ ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |