Metamath Proof Explorer


Theorem ifpbibib

Description: Factor conditional logic operator over biconditional in terms 2 and 3. (Contributed by RP, 21-Apr-2020)

Ref Expression
Assertion ifpbibib if-φψχθτif-φψθif-φχτ

Proof

Step Hyp Ref Expression
1 dfifp2 if-φψχθτφψχ¬φθτ
2 dfbi2 ψχψχχψ
3 2 imbi2i φψχφψχχψ
4 jcab φψχχψφψχφχψ
5 3 4 bitri φψχφψχφχψ
6 dfbi2 θτθττθ
7 6 imbi2i ¬φθτ¬φθττθ
8 jcab ¬φθττθ¬φθτ¬φτθ
9 7 8 bitri ¬φθτ¬φθτ¬φτθ
10 5 9 anbi12i φψχ¬φθτφψχφχψ¬φθτ¬φτθ
11 an4 φψχφχψ¬φθτ¬φτθφψχ¬φθτφχψ¬φτθ
12 10 11 bitri φψχ¬φθτφψχ¬φθτφχψ¬φτθ
13 dfifp2 if-φψχθτφψχ¬φθτ
14 ifpimimb if-φψχθτif-φψθif-φχτ
15 13 14 bitr3i φψχ¬φθτif-φψθif-φχτ
16 dfifp2 if-φχψτθφχψ¬φτθ
17 ifpimimb if-φχψτθif-φχτif-φψθ
18 16 17 bitr3i φχψ¬φτθif-φχτif-φψθ
19 15 18 anbi12i φψχ¬φθτφχψ¬φτθif-φψθif-φχτif-φχτif-φψθ
20 dfbi2 if-φψθif-φχτif-φψθif-φχτif-φχτif-φψθ
21 19 20 bitr4i φψχ¬φθτφχψ¬φτθif-φψθif-φχτ
22 1 12 21 3bitri if-φψχθτif-φψθif-φχτ