Metamath Proof Explorer


Theorem frege59a

Description: A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition 59 of Frege1879 p. 51.

Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collectionFrom Frege to Goedel, this proof has the frege12 incorrectly referenced where frege30 is in the original. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege59a ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) → ¬ ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) ) )

Proof

Step Hyp Ref Expression
1 frege58acor ( ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) )
2 frege30 ( ( ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) → ¬ ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) ) ) )
3 1 2 ax-mp ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) → ¬ ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) ) )