Description: A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition 59 of Frege1879 p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collectionFrom Frege to Goedel, this proof has the frege12 incorrectly referenced where frege30 is in the original. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege59a | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) → ¬ ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜏 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege58acor | ⊢ ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜏 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) | |
2 | frege30 | ⊢ ( ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜏 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) → ¬ ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜏 ) ) ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( ¬ if- ( 𝜑 , 𝜒 , 𝜏 ) → ¬ ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜏 ) ) ) ) |