Description: A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition 59 of Frege1879 p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collectionFrom Frege to Goedel, this proof has the frege12 incorrectly referenced where frege30 is in the original. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege59a | |- ( if- ( ph , ps , th ) -> ( -. if- ( ph , ch , ta ) -> -. ( ( ps -> ch ) /\ ( th -> ta ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege58acor | |- ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> ( if- ( ph , ps , th ) -> if- ( ph , ch , ta ) ) ) |
|
2 | frege30 | |- ( ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> ( if- ( ph , ps , th ) -> if- ( ph , ch , ta ) ) ) -> ( if- ( ph , ps , th ) -> ( -. if- ( ph , ch , ta ) -> -. ( ( ps -> ch ) /\ ( th -> ta ) ) ) ) ) |
|
3 | 1 2 | ax-mp | |- ( if- ( ph , ps , th ) -> ( -. if- ( ph , ch , ta ) -> -. ( ( ps -> ch ) /\ ( th -> ta ) ) ) ) |