Metamath Proof Explorer


Theorem frege59a

Description: A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition 59 of Frege1879 p. 51.

Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collectionFrom Frege to Goedel, this proof has the frege12 incorrectly referenced where frege30 is in the original. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege59a
|- ( if- ( ph , ps , th ) -> ( -. if- ( ph , ch , ta ) -> -. ( ( ps -> ch ) /\ ( th -> ta ) ) ) )

Proof

Step Hyp Ref Expression
1 frege58acor
 |-  ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> ( if- ( ph , ps , th ) -> if- ( ph , ch , ta ) ) )
2 frege30
 |-  ( ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> ( if- ( ph , ps , th ) -> if- ( ph , ch , ta ) ) ) -> ( if- ( ph , ps , th ) -> ( -. if- ( ph , ch , ta ) -> -. ( ( ps -> ch ) /\ ( th -> ta ) ) ) ) )
3 1 2 ax-mp
 |-  ( if- ( ph , ps , th ) -> ( -. if- ( ph , ch , ta ) -> -. ( ( ps -> ch ) /\ ( th -> ta ) ) ) )