| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege58acor |
⊢ ( ( ( 𝜓 → ( 𝜒 → 𝜃 ) ) ∧ ( 𝜏 → ( 𝜂 → 𝜁 ) ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , ( 𝜒 → 𝜃 ) , ( 𝜂 → 𝜁 ) ) ) ) |
| 2 |
|
ifpimim |
⊢ ( if- ( 𝜑 , ( 𝜒 → 𝜃 ) , ( 𝜂 → 𝜁 ) ) → ( if- ( 𝜑 , 𝜒 , 𝜂 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) |
| 3 |
1 2
|
syl6 |
⊢ ( ( ( 𝜓 → ( 𝜒 → 𝜃 ) ) ∧ ( 𝜏 → ( 𝜂 → 𝜁 ) ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → ( if- ( 𝜑 , 𝜒 , 𝜂 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) |
| 4 |
|
frege12 |
⊢ ( ( ( ( 𝜓 → ( 𝜒 → 𝜃 ) ) ∧ ( 𝜏 → ( 𝜂 → 𝜁 ) ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → ( if- ( 𝜑 , 𝜒 , 𝜂 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) → ( ( ( 𝜓 → ( 𝜒 → 𝜃 ) ) ∧ ( 𝜏 → ( 𝜂 → 𝜁 ) ) ) → ( if- ( 𝜑 , 𝜒 , 𝜂 ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( ( ( 𝜓 → ( 𝜒 → 𝜃 ) ) ∧ ( 𝜏 → ( 𝜂 → 𝜁 ) ) ) → ( if- ( 𝜑 , 𝜒 , 𝜂 ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) |