Metamath Proof Explorer


Theorem frege60a

Description: Swap antecedents of ax-frege58a . Proposition 60 of Frege1879 p. 52. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege60a ( ( ( 𝜓 → ( 𝜒𝜃 ) ) ∧ ( 𝜏 → ( 𝜂𝜁 ) ) ) → ( if- ( 𝜑 , 𝜒 , 𝜂 ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) )

Proof

Step Hyp Ref Expression
1 frege58acor ( ( ( 𝜓 → ( 𝜒𝜃 ) ) ∧ ( 𝜏 → ( 𝜂𝜁 ) ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , ( 𝜒𝜃 ) , ( 𝜂𝜁 ) ) ) )
2 ifpimim ( if- ( 𝜑 , ( 𝜒𝜃 ) , ( 𝜂𝜁 ) ) → ( if- ( 𝜑 , 𝜒 , 𝜂 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) )
3 1 2 syl6 ( ( ( 𝜓 → ( 𝜒𝜃 ) ) ∧ ( 𝜏 → ( 𝜂𝜁 ) ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → ( if- ( 𝜑 , 𝜒 , 𝜂 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) )
4 frege12 ( ( ( ( 𝜓 → ( 𝜒𝜃 ) ) ∧ ( 𝜏 → ( 𝜂𝜁 ) ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → ( if- ( 𝜑 , 𝜒 , 𝜂 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) → ( ( ( 𝜓 → ( 𝜒𝜃 ) ) ∧ ( 𝜏 → ( 𝜂𝜁 ) ) ) → ( if- ( 𝜑 , 𝜒 , 𝜂 ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) )
5 3 4 ax-mp ( ( ( 𝜓 → ( 𝜒𝜃 ) ) ∧ ( 𝜏 → ( 𝜂𝜁 ) ) ) → ( if- ( 𝜑 , 𝜒 , 𝜂 ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) )