Metamath Proof Explorer


Theorem frege61a

Description: Lemma for frege65a . Proposition 61 of Frege1879 p. 52. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege61a ( ( if- ( 𝜑 , 𝜓 , 𝜒 ) → 𝜃 ) → ( ( 𝜓𝜒 ) → 𝜃 ) )

Proof

Step Hyp Ref Expression
1 ax-frege58a ( ( 𝜓𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) )
2 frege9 ( ( ( 𝜓𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) ) → ( ( if- ( 𝜑 , 𝜓 , 𝜒 ) → 𝜃 ) → ( ( 𝜓𝜒 ) → 𝜃 ) ) )
3 1 2 ax-mp ( ( if- ( 𝜑 , 𝜓 , 𝜒 ) → 𝜃 ) → ( ( 𝜓𝜒 ) → 𝜃 ) )