Metamath Proof Explorer


Theorem frege61a

Description: Lemma for frege65a . Proposition 61 of Frege1879 p. 52. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege61a
|- ( ( if- ( ph , ps , ch ) -> th ) -> ( ( ps /\ ch ) -> th ) )

Proof

Step Hyp Ref Expression
1 ax-frege58a
 |-  ( ( ps /\ ch ) -> if- ( ph , ps , ch ) )
2 frege9
 |-  ( ( ( ps /\ ch ) -> if- ( ph , ps , ch ) ) -> ( ( if- ( ph , ps , ch ) -> th ) -> ( ( ps /\ ch ) -> th ) ) )
3 1 2 ax-mp
 |-  ( ( if- ( ph , ps , ch ) -> th ) -> ( ( ps /\ ch ) -> th ) )