Metamath Proof Explorer


Theorem frege65a

Description: A kind of Aristotelian inference. This judgement replaces the mode of inference barbara when the minor premise has a general context. Proposition 65 of Frege1879 p. 53. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege65a
|- ( ( ( ps -> ch ) /\ ( ta -> et ) ) -> ( ( ( ch -> th ) /\ ( et -> ze ) ) -> ( if- ( ph , ps , ta ) -> if- ( ph , th , ze ) ) ) )

Proof

Step Hyp Ref Expression
1 ifpimim
 |-  ( if- ( ph , ( ps -> ch ) , ( ta -> et ) ) -> ( if- ( ph , ps , ta ) -> if- ( ph , ch , et ) ) )
2 frege64a
 |-  ( ( if- ( ph , ps , ta ) -> if- ( ph , ch , et ) ) -> ( ( ( ch -> th ) /\ ( et -> ze ) ) -> ( if- ( ph , ps , ta ) -> if- ( ph , th , ze ) ) ) )
3 1 2 syl
 |-  ( if- ( ph , ( ps -> ch ) , ( ta -> et ) ) -> ( ( ( ch -> th ) /\ ( et -> ze ) ) -> ( if- ( ph , ps , ta ) -> if- ( ph , th , ze ) ) ) )
4 frege61a
 |-  ( ( if- ( ph , ( ps -> ch ) , ( ta -> et ) ) -> ( ( ( ch -> th ) /\ ( et -> ze ) ) -> ( if- ( ph , ps , ta ) -> if- ( ph , th , ze ) ) ) ) -> ( ( ( ps -> ch ) /\ ( ta -> et ) ) -> ( ( ( ch -> th ) /\ ( et -> ze ) ) -> ( if- ( ph , ps , ta ) -> if- ( ph , th , ze ) ) ) ) )
5 3 4 ax-mp
 |-  ( ( ( ps -> ch ) /\ ( ta -> et ) ) -> ( ( ( ch -> th ) /\ ( et -> ze ) ) -> ( if- ( ph , ps , ta ) -> if- ( ph , th , ze ) ) ) )