Description: Lemma for frege65a . Proposition 64 of Frege1879 p. 53. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege64a | |- ( ( if- ( ph , ps , ta ) -> if- ( si , ch , et ) ) -> ( ( ( ch -> th ) /\ ( et -> ze ) ) -> ( if- ( ph , ps , ta ) -> if- ( si , th , ze ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege62a | |- ( if- ( si , ch , et ) -> ( ( ( ch -> th ) /\ ( et -> ze ) ) -> if- ( si , th , ze ) ) ) |
|
2 | frege18 | |- ( ( if- ( si , ch , et ) -> ( ( ( ch -> th ) /\ ( et -> ze ) ) -> if- ( si , th , ze ) ) ) -> ( ( if- ( ph , ps , ta ) -> if- ( si , ch , et ) ) -> ( ( ( ch -> th ) /\ ( et -> ze ) ) -> ( if- ( ph , ps , ta ) -> if- ( si , th , ze ) ) ) ) ) |
|
3 | 1 2 | ax-mp | |- ( ( if- ( ph , ps , ta ) -> if- ( si , ch , et ) ) -> ( ( ( ch -> th ) /\ ( et -> ze ) ) -> ( if- ( ph , ps , ta ) -> if- ( si , th , ze ) ) ) ) |