Metamath Proof Explorer


Theorem frege64a

Description: Lemma for frege65a . Proposition 64 of Frege1879 p. 53. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege64a ( ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜎 , 𝜒 , 𝜂 ) ) → ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜎 , 𝜃 , 𝜁 ) ) ) )

Proof

Step Hyp Ref Expression
1 frege62a ( if- ( 𝜎 , 𝜒 , 𝜂 ) → ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → if- ( 𝜎 , 𝜃 , 𝜁 ) ) )
2 frege18 ( ( if- ( 𝜎 , 𝜒 , 𝜂 ) → ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → if- ( 𝜎 , 𝜃 , 𝜁 ) ) ) → ( ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜎 , 𝜒 , 𝜂 ) ) → ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜎 , 𝜃 , 𝜁 ) ) ) ) )
3 1 2 ax-mp ( ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜎 , 𝜒 , 𝜂 ) ) → ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜎 , 𝜃 , 𝜁 ) ) ) )