Metamath Proof Explorer


Theorem frege65a

Description: A kind of Aristotelian inference. This judgement replaces the mode of inference barbara when the minor premise has a general context. Proposition 65 of Frege1879 p. 53. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege65a ( ( ( 𝜓𝜒 ) ∧ ( 𝜏𝜂 ) ) → ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) )

Proof

Step Hyp Ref Expression
1 ifpimim ( if- ( 𝜑 , ( 𝜓𝜒 ) , ( 𝜏𝜂 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜒 , 𝜂 ) ) )
2 frege64a ( ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜒 , 𝜂 ) ) → ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) )
3 1 2 syl ( if- ( 𝜑 , ( 𝜓𝜒 ) , ( 𝜏𝜂 ) ) → ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) )
4 frege61a ( ( if- ( 𝜑 , ( 𝜓𝜒 ) , ( 𝜏𝜂 ) ) → ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) → ( ( ( 𝜓𝜒 ) ∧ ( 𝜏𝜂 ) ) → ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) )
5 3 4 ax-mp ( ( ( 𝜓𝜒 ) ∧ ( 𝜏𝜂 ) ) → ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) )