Step |
Hyp |
Ref |
Expression |
1 |
|
ifpimim |
⊢ ( if- ( 𝜑 , ( 𝜓 → 𝜒 ) , ( 𝜏 → 𝜂 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜒 , 𝜂 ) ) ) |
2 |
|
frege64a |
⊢ ( ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜒 , 𝜂 ) ) → ( ( ( 𝜒 → 𝜃 ) ∧ ( 𝜂 → 𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) |
3 |
1 2
|
syl |
⊢ ( if- ( 𝜑 , ( 𝜓 → 𝜒 ) , ( 𝜏 → 𝜂 ) ) → ( ( ( 𝜒 → 𝜃 ) ∧ ( 𝜂 → 𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) |
4 |
|
frege61a |
⊢ ( ( if- ( 𝜑 , ( 𝜓 → 𝜒 ) , ( 𝜏 → 𝜂 ) ) → ( ( ( 𝜒 → 𝜃 ) ∧ ( 𝜂 → 𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) → ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜏 → 𝜂 ) ) → ( ( ( 𝜒 → 𝜃 ) ∧ ( 𝜂 → 𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜏 → 𝜂 ) ) → ( ( ( 𝜒 → 𝜃 ) ∧ ( 𝜂 → 𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) |