Description: Swap antecedents of frege65a . Proposition 66 of Frege1879 p. 54. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege66a | ⊢ ( ( ( 𝜒 → 𝜃 ) ∧ ( 𝜂 → 𝜁 ) ) → ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜏 → 𝜂 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege65a | ⊢ ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜏 → 𝜂 ) ) → ( ( ( 𝜒 → 𝜃 ) ∧ ( 𝜂 → 𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) | |
2 | ax-frege8 | ⊢ ( ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜏 → 𝜂 ) ) → ( ( ( 𝜒 → 𝜃 ) ∧ ( 𝜂 → 𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) → ( ( ( 𝜒 → 𝜃 ) ∧ ( 𝜂 → 𝜁 ) ) → ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜏 → 𝜂 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( ( 𝜒 → 𝜃 ) ∧ ( 𝜂 → 𝜁 ) ) → ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜏 → 𝜂 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) |