Metamath Proof Explorer


Theorem frege66a

Description: Swap antecedents of frege65a . Proposition 66 of Frege1879 p. 54. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege66a ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → ( ( ( 𝜓𝜒 ) ∧ ( 𝜏𝜂 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) )

Proof

Step Hyp Ref Expression
1 frege65a ( ( ( 𝜓𝜒 ) ∧ ( 𝜏𝜂 ) ) → ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) )
2 ax-frege8 ( ( ( ( 𝜓𝜒 ) ∧ ( 𝜏𝜂 ) ) → ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) → ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → ( ( ( 𝜓𝜒 ) ∧ ( 𝜏𝜂 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) ) )
3 1 2 ax-mp ( ( ( 𝜒𝜃 ) ∧ ( 𝜂𝜁 ) ) → ( ( ( 𝜓𝜒 ) ∧ ( 𝜏𝜂 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜏 ) → if- ( 𝜑 , 𝜃 , 𝜁 ) ) ) )