Description: Lemma for frege68a . Proposition 67 of Frege1879 p. 54. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege67a | ⊢ ( ( ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜃 ) → ( 𝜃 → ( 𝜓 ∧ 𝜒 ) ) ) → ( ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜃 ) → ( 𝜃 → if- ( 𝜑 , 𝜓 , 𝜒 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege58a | ⊢ ( ( 𝜓 ∧ 𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) ) | |
2 | frege7 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) ) → ( ( ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜃 ) → ( 𝜃 → ( 𝜓 ∧ 𝜒 ) ) ) → ( ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜃 ) → ( 𝜃 → if- ( 𝜑 , 𝜓 , 𝜒 ) ) ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜃 ) → ( 𝜃 → ( 𝜓 ∧ 𝜒 ) ) ) → ( ( ( 𝜓 ∧ 𝜒 ) ↔ 𝜃 ) → ( 𝜃 → if- ( 𝜑 , 𝜓 , 𝜒 ) ) ) ) |