Metamath Proof Explorer


Theorem frege67a

Description: Lemma for frege68a . Proposition 67 of Frege1879 p. 54. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege67a ( ( ( ( 𝜓𝜒 ) ↔ 𝜃 ) → ( 𝜃 → ( 𝜓𝜒 ) ) ) → ( ( ( 𝜓𝜒 ) ↔ 𝜃 ) → ( 𝜃 → if- ( 𝜑 , 𝜓 , 𝜒 ) ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege58a ( ( 𝜓𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) )
2 frege7 ( ( ( 𝜓𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) ) → ( ( ( ( 𝜓𝜒 ) ↔ 𝜃 ) → ( 𝜃 → ( 𝜓𝜒 ) ) ) → ( ( ( 𝜓𝜒 ) ↔ 𝜃 ) → ( 𝜃 → if- ( 𝜑 , 𝜓 , 𝜒 ) ) ) ) )
3 1 2 ax-mp ( ( ( ( 𝜓𝜒 ) ↔ 𝜃 ) → ( 𝜃 → ( 𝜓𝜒 ) ) ) → ( ( ( 𝜓𝜒 ) ↔ 𝜃 ) → ( 𝜃 → if- ( 𝜑 , 𝜓 , 𝜒 ) ) ) )