Description: Lemma for frege68a . Proposition 67 of Frege1879 p. 54. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege67a | |- ( ( ( ( ps /\ ch ) <-> th ) -> ( th -> ( ps /\ ch ) ) ) -> ( ( ( ps /\ ch ) <-> th ) -> ( th -> if- ( ph , ps , ch ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege58a | |- ( ( ps /\ ch ) -> if- ( ph , ps , ch ) ) |
|
2 | frege7 | |- ( ( ( ps /\ ch ) -> if- ( ph , ps , ch ) ) -> ( ( ( ( ps /\ ch ) <-> th ) -> ( th -> ( ps /\ ch ) ) ) -> ( ( ( ps /\ ch ) <-> th ) -> ( th -> if- ( ph , ps , ch ) ) ) ) ) |
|
3 | 1 2 | ax-mp | |- ( ( ( ( ps /\ ch ) <-> th ) -> ( th -> ( ps /\ ch ) ) ) -> ( ( ( ps /\ ch ) <-> th ) -> ( th -> if- ( ph , ps , ch ) ) ) ) |