Metamath Proof Explorer


Theorem frege67a

Description: Lemma for frege68a . Proposition 67 of Frege1879 p. 54. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege67a
|- ( ( ( ( ps /\ ch ) <-> th ) -> ( th -> ( ps /\ ch ) ) ) -> ( ( ( ps /\ ch ) <-> th ) -> ( th -> if- ( ph , ps , ch ) ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege58a
 |-  ( ( ps /\ ch ) -> if- ( ph , ps , ch ) )
2 frege7
 |-  ( ( ( ps /\ ch ) -> if- ( ph , ps , ch ) ) -> ( ( ( ( ps /\ ch ) <-> th ) -> ( th -> ( ps /\ ch ) ) ) -> ( ( ( ps /\ ch ) <-> th ) -> ( th -> if- ( ph , ps , ch ) ) ) ) )
3 1 2 ax-mp
 |-  ( ( ( ( ps /\ ch ) <-> th ) -> ( th -> ( ps /\ ch ) ) ) -> ( ( ( ps /\ ch ) <-> th ) -> ( th -> if- ( ph , ps , ch ) ) ) )