Metamath Proof Explorer


Theorem frege68a

Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of Frege1879 p. 54. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege68a
|- ( ( ( ps /\ ch ) <-> th ) -> ( th -> if- ( ph , ps , ch ) ) )

Proof

Step Hyp Ref Expression
1 frege57aid
 |-  ( ( ( ps /\ ch ) <-> th ) -> ( th -> ( ps /\ ch ) ) )
2 frege67a
 |-  ( ( ( ( ps /\ ch ) <-> th ) -> ( th -> ( ps /\ ch ) ) ) -> ( ( ( ps /\ ch ) <-> th ) -> ( th -> if- ( ph , ps , ch ) ) ) )
3 1 2 ax-mp
 |-  ( ( ( ps /\ ch ) <-> th ) -> ( th -> if- ( ph , ps , ch ) ) )