Metamath Proof Explorer


Theorem frege68a

Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of Frege1879 p. 54. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege68a ψχθθif-φψχ

Proof

Step Hyp Ref Expression
1 frege57aid ψχθθψχ
2 frege67a ψχθθψχψχθθif-φψχ
3 1 2 ax-mp ψχθθif-φψχ