Metamath Proof Explorer


Theorem frege66a

Description: Swap antecedents of frege65a . Proposition 66 of Frege1879 p. 54. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege66a χ θ η ζ ψ χ τ η if- φ ψ τ if- φ θ ζ

Proof

Step Hyp Ref Expression
1 frege65a ψ χ τ η χ θ η ζ if- φ ψ τ if- φ θ ζ
2 ax-frege8 ψ χ τ η χ θ η ζ if- φ ψ τ if- φ θ ζ χ θ η ζ ψ χ τ η if- φ ψ τ if- φ θ ζ
3 1 2 ax-mp χ θ η ζ ψ χ τ η if- φ ψ τ if- φ θ ζ