Description: The conditional operator is implied by the conjunction of its possible outputs. Dual statement of ifpor . (Contributed by BJ, 30-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | anifp | ⊢ ( ( 𝜓 ∧ 𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc | ⊢ ( 𝜓 → ( ¬ 𝜑 ∨ 𝜓 ) ) | |
| 2 | olc | ⊢ ( 𝜒 → ( 𝜑 ∨ 𝜒 ) ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝜓 ∧ 𝜒 ) → ( ( ¬ 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ) |
| 4 | dfifp4 | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( ¬ 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ) | |
| 5 | 3 4 | sylibr | ⊢ ( ( 𝜓 ∧ 𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) ) |