Description: The conditional operator implies the disjunction of its possible outputs. Dual statement of anifp . (Contributed by BJ, 1-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpor | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) → ( 𝜓 ∨ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ifp | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) | |
| 2 | simpr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) | |
| 3 | simpr | ⊢ ( ( ¬ 𝜑 ∧ 𝜒 ) → 𝜒 ) | |
| 4 | 2 3 | orim12i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) → ( 𝜓 ∨ 𝜒 ) ) |
| 5 | 1 4 | sylbi | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) → ( 𝜓 ∨ 𝜒 ) ) |