Description: The conditional operator implies the disjunction of its possible outputs. Dual statement of anifp . (Contributed by BJ, 1-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpor | |- ( if- ( ph , ps , ch ) -> ( ps \/ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ifp | |- ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
|
| 2 | simpr | |- ( ( ph /\ ps ) -> ps ) |
|
| 3 | simpr | |- ( ( -. ph /\ ch ) -> ch ) |
|
| 4 | 2 3 | orim12i | |- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) -> ( ps \/ ch ) ) |
| 5 | 1 4 | sylbi | |- ( if- ( ph , ps , ch ) -> ( ps \/ ch ) ) |