Description: The conditional operator is implied by the conjunction of its possible outputs. Dual statement of ifpor . (Contributed by BJ, 30-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | anifp | |- ( ( ps /\ ch ) -> if- ( ph , ps , ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc | |- ( ps -> ( -. ph \/ ps ) ) |
|
| 2 | olc | |- ( ch -> ( ph \/ ch ) ) |
|
| 3 | 1 2 | anim12i | |- ( ( ps /\ ch ) -> ( ( -. ph \/ ps ) /\ ( ph \/ ch ) ) ) |
| 4 | dfifp4 | |- ( if- ( ph , ps , ch ) <-> ( ( -. ph \/ ps ) /\ ( ph \/ ch ) ) ) |
|
| 5 | 3 4 | sylibr | |- ( ( ps /\ ch ) -> if- ( ph , ps , ch ) ) |