Metamath Proof Explorer


Theorem axfrege8

Description: Swap antecedents. Identical to pm2.04 . This demonstrates that Axiom 8 of Frege1879 p. 35 is redundant.

Proof follows closely proof of pm2.04 in https://us.metamath.org/mmsolitaire/pmproofs.txt , but in the style of Frege's 1879 work. (Contributed by RP, 24-Dec-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion axfrege8 φ ψ χ ψ φ χ

Proof

Step Hyp Ref Expression
1 rp-7frege φ ψ χ ψ φ ψ φ χ
2 rp-8frege φ ψ χ ψ φ ψ φ χ φ ψ χ ψ φ χ
3 1 2 ax-mp φ ψ χ ψ φ χ