Description: Derive Axiom ax-hfi from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axhil.1 | ||
| axhil.2 | |||
| axhfi.1 | |||
| Assertion | axhfi-zf | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | axhil.1 | ||
| 2 | axhil.2 | ||
| 3 | axhfi.1 | ||
| 4 | df-hba | ||
| 5 | 1 | fveq2i | |
| 6 | 4 5 | eqtr4i | |
| 7 | 6 3 | hlipf | |
| 8 | 2 7 | ax-mp |