Metamath Proof Explorer


Theorem axhfi-zf

Description: Derive Axiom ax-hfi from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Hypotheses axhil.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
axhil.2 𝑈 ∈ CHilOLD
axhfi.1 ·ih = ( ·𝑖OLD𝑈 )
Assertion axhfi-zf ·ih : ( ℋ × ℋ ) ⟶ ℂ

Proof

Step Hyp Ref Expression
1 axhil.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 axhil.2 𝑈 ∈ CHilOLD
3 axhfi.1 ·ih = ( ·𝑖OLD𝑈 )
4 df-hba ℋ = ( BaseSet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
5 1 fveq2i ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
6 4 5 eqtr4i ℋ = ( BaseSet ‘ 𝑈 )
7 6 3 hlipf ( 𝑈 ∈ CHilOLD·ih : ( ℋ × ℋ ) ⟶ ℂ )
8 2 7 ax-mp ·ih : ( ℋ × ℋ ) ⟶ ℂ