Metamath Proof Explorer


Theorem axpr

Description: Unabbreviated version of the Axiom of Pairing of ZF set theory, derived as a theorem from the other axioms.

This theorem should not be referenced by any proof. Instead, use ax-pr below so that the uses of the Axiom of Pairing can be more easily identified.

For a shorter proof using ax-ext , see axprALT . (Contributed by NM, 14-Nov-2006) Remove dependency on ax-ext . (Revised by Rohan Ridenour, 10-Aug-2023) (Proof shortened by BJ, 13-Aug-2023) Use ax-pr instead. (New usage is discouraged.)

Ref Expression
Assertion axpr zww=xw=ywz

Proof

Step Hyp Ref Expression
1 axprlem3 zwwzsspif-nnsw=xw=y
2 biimpr wzsspif-nnsw=xw=ysspif-nnsw=xw=ywz
3 2 alimi wwzsspif-nnsw=xw=ywsspif-nnsw=xw=ywz
4 1 3 eximii zwsspif-nnsw=xw=ywz
5 axprlem4 snst¬tnspw=xsspif-nnsw=xw=y
6 axprlem5 snst¬tnspw=ysspif-nnsw=xw=y
7 5 6 jaodan snst¬tnspw=xw=ysspif-nnsw=xw=y
8 7 ex snst¬tnspw=xw=ysspif-nnsw=xw=y
9 8 imim1d snst¬tnspsspif-nnsw=xw=ywzw=xw=ywz
10 9 alimdv snst¬tnspwsspif-nnsw=xw=ywzww=xw=ywz
11 10 eximdv snst¬tnspzwsspif-nnsw=xw=ywzzww=xw=ywz
12 4 11 mpi snst¬tnspzww=xw=ywz
13 axprlem2 psnst¬tnsp
14 12 13 exlimiiv zww=xw=ywz