Metamath Proof Explorer


Theorem baseltedgfOLD

Description: Obsolete proof of basendxltedgfndx as of 30-Oct-2024. The index value of the Base slot is less than the index value of the .ef slot. (Contributed by AV, 21-Sep-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion baseltedgfOLD Basendx<efndx

Proof

Step Hyp Ref Expression
1 1nn 1
2 8nn0 80
3 1nn0 10
4 1lt10 1<10
5 1 2 3 4 declti 1<18
6 df-base Base=Slot1
7 6 1 ndxarg Basendx=1
8 df-edgf ef=Slot18
9 8nn 8
10 3 9 decnncl 18
11 8 10 ndxarg efndx=18
12 5 7 11 3brtr4i Basendx<efndx