Metamath Proof Explorer


Theorem basendxlttsetndx

Description: The index of the slot for the base set is less then the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024)

Ref Expression
Assertion basendxlttsetndx Basendx<TopSetndx

Proof

Step Hyp Ref Expression
1 1lt9 1<9
2 basendx Basendx=1
3 tsetndx TopSetndx=9
4 1 2 3 3brtr4i Basendx<TopSetndx