Metamath Proof Explorer


Theorem biadan

Description: An implication is equivalent to the equivalence of some implied equivalence and some other equivalence involving a conjunction. A utility lemma as illustrated in biadanii and elelb . (Contributed by BJ, 4-Mar-2023) (Proof shortened by Wolf Lammen, 8-Mar-2023)

Ref Expression
Assertion biadan φψψφχφψχ

Proof

Step Hyp Ref Expression
1 pm4.71r φψφψφ
2 bicom φψφψφφ
3 bicom φψχψχφ
4 pm5.32 ψφχψφψχ
5 3 4 bibi12i φψχψφχψχφψφψχ
6 bicom ψφχφψχφψχψφχ
7 biluk ψφφψχφψφψχ
8 5 6 7 3bitr4ri ψφφψφχφψχ
9 1 2 8 3bitri φψψφχφψχ