Metamath Proof Explorer


Theorem bibi12i

Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993)

Ref Expression
Hypotheses bibi2i.1 φψ
bibi12i.2 χθ
Assertion bibi12i φχψθ

Proof

Step Hyp Ref Expression
1 bibi2i.1 φψ
2 bibi12i.2 χθ
3 2 bibi2i φχφθ
4 1 bibi1i φθψθ
5 3 4 bitri φχψθ