Metamath Proof Explorer


Theorem bibi2d

Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993) (Proof shortened by Wolf Lammen, 19-May-2013)

Ref Expression
Hypothesis imbid.1 φψχ
Assertion bibi2d φθψθχ

Proof

Step Hyp Ref Expression
1 imbid.1 φψχ
2 1 pm5.74i φψφχ
3 2 bibi2i φθφψφθφχ
4 pm5.74 φθψφθφψ
5 pm5.74 φθχφθφχ
6 3 4 5 3bitr4i φθψφθχ
7 6 pm5.74ri φθψθχ