Metamath Proof Explorer


Theorem bitr4id

Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994)

Ref Expression
Hypotheses bitr4id.2 ψχ
bitr4id.1 φθχ
Assertion bitr4id φψθ

Proof

Step Hyp Ref Expression
1 bitr4id.2 ψχ
2 bitr4id.1 φθχ
3 1 bicomi χψ
4 2 3 bitr2di φψθ