Metamath Proof Explorer


Theorem bj-19.41al

Description: Special case of 19.41 proved from core axioms, ax-10 (modal5), and hba1 (modal4). (Contributed by BJ, 29-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-19.41al x φ x ψ x φ x ψ

Proof

Step Hyp Ref Expression
1 19.40 x φ x ψ x φ x x ψ
2 hbe1a x x ψ x ψ
3 2 anim2i x φ x x ψ x φ x ψ
4 1 3 syl x φ x ψ x φ x ψ
5 hba1 x ψ x x ψ
6 5 anim2i x φ x ψ x φ x x ψ
7 19.29r x φ x x ψ x φ x ψ
8 6 7 syl x φ x ψ x φ x ψ
9 4 8 impbii x φ x ψ x φ x ψ