Description: Special case of 19.41 proved from core axioms, ax-10 (modal5), and hba1 (modal4). (Contributed by BJ, 29-Dec-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-19.41al | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 ∀ 𝑥 𝜓 ) ) | |
2 | hbe1a | ⊢ ( ∃ 𝑥 ∀ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) | |
3 | 2 | anim2i | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |
4 | 1 3 | syl | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |
5 | hba1 | ⊢ ( ∀ 𝑥 𝜓 → ∀ 𝑥 ∀ 𝑥 𝜓 ) | |
6 | 5 | anim2i | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ∀ 𝑥 𝜓 ) ) |
7 | 19.29r | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ∀ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ) | |
8 | 6 7 | syl | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |
9 | 4 8 | impbii | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |