Metamath Proof Explorer


Theorem bj-19.41al

Description: Special case of 19.41 proved from core axioms, ax-10 (modal5), and hba1 (modal4). (Contributed by BJ, 29-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-19.41al ( ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.40 ( ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥𝑥 𝜓 ) )
2 hbe1a ( ∃ 𝑥𝑥 𝜓 → ∀ 𝑥 𝜓 )
3 2 anim2i ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) )
4 1 3 syl ( ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) )
5 hba1 ( ∀ 𝑥 𝜓 → ∀ 𝑥𝑥 𝜓 )
6 5 anim2i ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥𝑥 𝜓 ) )
7 19.29r ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) )
8 6 7 syl ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) )
9 4 8 impbii ( ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) )