Metamath Proof Explorer


Theorem bj-equsexval

Description: Special case of equsexv proved from Tarski, ax-10 (modal5) and hba1 (modal4). (Contributed by BJ, 29-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-equsexval.1 ( 𝑥 = 𝑦 → ( 𝜑 ↔ ∀ 𝑥 𝜓 ) )
Assertion bj-equsexval ( ∃ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ∀ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 bj-equsexval.1 ( 𝑥 = 𝑦 → ( 𝜑 ↔ ∀ 𝑥 𝜓 ) )
2 1 pm5.32i ( ( 𝑥 = 𝑦𝜑 ) ↔ ( 𝑥 = 𝑦 ∧ ∀ 𝑥 𝜓 ) )
3 2 exbii ( ∃ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ ∀ 𝑥 𝜓 ) )
4 ax6ev 𝑥 𝑥 = 𝑦
5 bj-19.41al ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ ∀ 𝑥 𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 𝜓 ) )
6 4 5 mpbiran ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ ∀ 𝑥 𝜓 ) ↔ ∀ 𝑥 𝜓 )
7 3 6 bitri ( ∃ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ∀ 𝑥 𝜓 )