Metamath Proof Explorer


Theorem bj-equsexval

Description: Special case of equsexv proved from core axioms, ax-10 (modal5), and hba1 (modal4). (Contributed by BJ, 29-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-equsexval.1
|- ( x = y -> ( ph <-> A. x ps ) )
Assertion bj-equsexval
|- ( E. x ( x = y /\ ph ) <-> A. x ps )

Proof

Step Hyp Ref Expression
1 bj-equsexval.1
 |-  ( x = y -> ( ph <-> A. x ps ) )
2 1 pm5.32i
 |-  ( ( x = y /\ ph ) <-> ( x = y /\ A. x ps ) )
3 2 exbii
 |-  ( E. x ( x = y /\ ph ) <-> E. x ( x = y /\ A. x ps ) )
4 ax6ev
 |-  E. x x = y
5 bj-19.41al
 |-  ( E. x ( x = y /\ A. x ps ) <-> ( E. x x = y /\ A. x ps ) )
6 4 5 mpbiran
 |-  ( E. x ( x = y /\ A. x ps ) <-> A. x ps )
7 3 6 bitri
 |-  ( E. x ( x = y /\ ph ) <-> A. x ps )