Description: Special case of equsexv proved from core axioms, ax-10 (modal5), and hba1 (modal4). (Contributed by BJ, 29-Dec-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bj-equsexval.1 | |- ( x = y -> ( ph <-> A. x ps ) ) |
|
Assertion | bj-equsexval | |- ( E. x ( x = y /\ ph ) <-> A. x ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-equsexval.1 | |- ( x = y -> ( ph <-> A. x ps ) ) |
|
2 | 1 | pm5.32i | |- ( ( x = y /\ ph ) <-> ( x = y /\ A. x ps ) ) |
3 | 2 | exbii | |- ( E. x ( x = y /\ ph ) <-> E. x ( x = y /\ A. x ps ) ) |
4 | ax6ev | |- E. x x = y |
|
5 | bj-19.41al | |- ( E. x ( x = y /\ A. x ps ) <-> ( E. x x = y /\ A. x ps ) ) |
|
6 | 4 5 | mpbiran | |- ( E. x ( x = y /\ A. x ps ) <-> A. x ps ) |
7 | 3 6 | bitri | |- ( E. x ( x = y /\ ph ) <-> A. x ps ) |