Metamath Proof Explorer


Theorem equsexv

Description: An equivalence related to implicit substitution. Version of equsex with a disjoint variable condition, which does not require ax-13 . See equsexvw for a version with two disjoint variable conditions requiring fewer axioms. See also the dual form equsalv . (Contributed by NM, 5-Aug-1993) (Revised by BJ, 31-May-2019) Avoid ax-10 . (Revised by Gino Giotto, 18-Nov-2024)

Ref Expression
Hypotheses equsalv.nf
|- F/ x ps
equsalv.1
|- ( x = y -> ( ph <-> ps ) )
Assertion equsexv
|- ( E. x ( x = y /\ ph ) <-> ps )

Proof

Step Hyp Ref Expression
1 equsalv.nf
 |-  F/ x ps
2 equsalv.1
 |-  ( x = y -> ( ph <-> ps ) )
3 2 biimpa
 |-  ( ( x = y /\ ph ) -> ps )
4 1 3 exlimi
 |-  ( E. x ( x = y /\ ph ) -> ps )
5 1 2 equsalv
 |-  ( A. x ( x = y -> ph ) <-> ps )
6 equs4v
 |-  ( A. x ( x = y -> ph ) -> E. x ( x = y /\ ph ) )
7 5 6 sylbir
 |-  ( ps -> E. x ( x = y /\ ph ) )
8 4 7 impbii
 |-  ( E. x ( x = y /\ ph ) <-> ps )