Metamath Proof Explorer


Theorem equsalv

Description: An equivalence related to implicit substitution. Version of equsal with a disjoint variable condition, which does not require ax-13 . See equsalvw for a version with two disjoint variable conditions requiring fewer axioms. See also the dual form equsexv . (Contributed by NM, 2-Jun-1993) (Revised by BJ, 31-May-2019)

Ref Expression
Hypotheses equsalv.nf
|- F/ x ps
equsalv.1
|- ( x = y -> ( ph <-> ps ) )
Assertion equsalv
|- ( A. x ( x = y -> ph ) <-> ps )

Proof

Step Hyp Ref Expression
1 equsalv.nf
 |-  F/ x ps
2 equsalv.1
 |-  ( x = y -> ( ph <-> ps ) )
3 1 19.23
 |-  ( A. x ( x = y -> ps ) <-> ( E. x x = y -> ps ) )
4 2 pm5.74i
 |-  ( ( x = y -> ph ) <-> ( x = y -> ps ) )
5 4 albii
 |-  ( A. x ( x = y -> ph ) <-> A. x ( x = y -> ps ) )
6 ax6ev
 |-  E. x x = y
7 6 a1bi
 |-  ( ps <-> ( E. x x = y -> ps ) )
8 3 5 7 3bitr4i
 |-  ( A. x ( x = y -> ph ) <-> ps )