Description: An equivalence related to implicit substitution. Version of equsal with a disjoint variable condition, which does not require ax-13 . See equsalvw for a version with two disjoint variable conditions requiring fewer axioms. See also the dual form equsexv . (Contributed by NM, 2-Jun-1993) (Revised by BJ, 31-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | equsalv.nf | |- F/ x ps |
|
equsalv.1 | |- ( x = y -> ( ph <-> ps ) ) |
||
Assertion | equsalv | |- ( A. x ( x = y -> ph ) <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsalv.nf | |- F/ x ps |
|
2 | equsalv.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
3 | 1 | 19.23 | |- ( A. x ( x = y -> ps ) <-> ( E. x x = y -> ps ) ) |
4 | 2 | pm5.74i | |- ( ( x = y -> ph ) <-> ( x = y -> ps ) ) |
5 | 4 | albii | |- ( A. x ( x = y -> ph ) <-> A. x ( x = y -> ps ) ) |
6 | ax6ev | |- E. x x = y |
|
7 | 6 | a1bi | |- ( ps <-> ( E. x x = y -> ps ) ) |
8 | 3 5 7 | 3bitr4i | |- ( A. x ( x = y -> ph ) <-> ps ) |