Metamath Proof Explorer


Theorem bj-animbi

Description: Conjunction in terms of implication and biconditional. Note that the proof is intuitionistic (use of ax-3 comes from the unusual definition of the biconditional in set.mm). (Contributed by BJ, 23-Sep-2023)

Ref Expression
Assertion bj-animbi φ ψ φ φ ψ

Proof

Step Hyp Ref Expression
1 simpl φ ψ φ
2 pm3.4 φ ψ φ ψ
3 1 2 2thd φ ψ φ φ ψ
4 biimp φ φ ψ φ φ ψ
5 4 pm2.43d φ φ ψ φ ψ
6 biimpr φ φ ψ φ ψ φ
7 5 6 mpd φ φ ψ φ
8 7 5 jcai φ φ ψ φ ψ
9 3 8 impbii φ ψ φ φ ψ