Metamath Proof Explorer


Theorem bj-animbi

Description: Conjunction in terms of implication and biconditional. Note that the proof is intuitionistic (use of ax-3 comes from the unusual definition of the biconditional in set.mm). (Contributed by BJ, 23-Sep-2023)

Ref Expression
Assertion bj-animbi
|- ( ( ph /\ ps ) <-> ( ph <-> ( ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( ph /\ ps ) -> ph )
2 pm3.4
 |-  ( ( ph /\ ps ) -> ( ph -> ps ) )
3 1 2 2thd
 |-  ( ( ph /\ ps ) -> ( ph <-> ( ph -> ps ) ) )
4 biimp
 |-  ( ( ph <-> ( ph -> ps ) ) -> ( ph -> ( ph -> ps ) ) )
5 4 pm2.43d
 |-  ( ( ph <-> ( ph -> ps ) ) -> ( ph -> ps ) )
6 biimpr
 |-  ( ( ph <-> ( ph -> ps ) ) -> ( ( ph -> ps ) -> ph ) )
7 5 6 mpd
 |-  ( ( ph <-> ( ph -> ps ) ) -> ph )
8 7 5 jcai
 |-  ( ( ph <-> ( ph -> ps ) ) -> ( ph /\ ps ) )
9 3 8 impbii
 |-  ( ( ph /\ ps ) <-> ( ph <-> ( ph -> ps ) ) )