Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( ph /\ ps ) -> ph ) |
2 |
|
pm3.4 |
|- ( ( ph /\ ps ) -> ( ph -> ps ) ) |
3 |
1 2
|
2thd |
|- ( ( ph /\ ps ) -> ( ph <-> ( ph -> ps ) ) ) |
4 |
|
biimp |
|- ( ( ph <-> ( ph -> ps ) ) -> ( ph -> ( ph -> ps ) ) ) |
5 |
4
|
pm2.43d |
|- ( ( ph <-> ( ph -> ps ) ) -> ( ph -> ps ) ) |
6 |
|
biimpr |
|- ( ( ph <-> ( ph -> ps ) ) -> ( ( ph -> ps ) -> ph ) ) |
7 |
5 6
|
mpd |
|- ( ( ph <-> ( ph -> ps ) ) -> ph ) |
8 |
7 5
|
jcai |
|- ( ( ph <-> ( ph -> ps ) ) -> ( ph /\ ps ) ) |
9 |
3 8
|
impbii |
|- ( ( ph /\ ps ) <-> ( ph <-> ( ph -> ps ) ) ) |