| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( ph /\ ps ) -> ph ) |
| 2 |
|
pm3.4 |
|- ( ( ph /\ ps ) -> ( ph -> ps ) ) |
| 3 |
1 2
|
2thd |
|- ( ( ph /\ ps ) -> ( ph <-> ( ph -> ps ) ) ) |
| 4 |
|
biimp |
|- ( ( ph <-> ( ph -> ps ) ) -> ( ph -> ( ph -> ps ) ) ) |
| 5 |
4
|
pm2.43d |
|- ( ( ph <-> ( ph -> ps ) ) -> ( ph -> ps ) ) |
| 6 |
|
biimpr |
|- ( ( ph <-> ( ph -> ps ) ) -> ( ( ph -> ps ) -> ph ) ) |
| 7 |
5 6
|
mpd |
|- ( ( ph <-> ( ph -> ps ) ) -> ph ) |
| 8 |
7 5
|
jcai |
|- ( ( ph <-> ( ph -> ps ) ) -> ( ph /\ ps ) ) |
| 9 |
3 8
|
impbii |
|- ( ( ph /\ ps ) <-> ( ph <-> ( ph -> ps ) ) ) |