Metamath Proof Explorer


Theorem bj-animbi

Description: Conjunction in terms of implication and biconditional. Note that the proof is intuitionistic (use of ax-3 comes from the unusual definition of the biconditional in set.mm). (Contributed by BJ, 23-Sep-2023)

Ref Expression
Assertion bj-animbi φψφφψ

Proof

Step Hyp Ref Expression
1 simpl φψφ
2 pm3.4 φψφψ
3 1 2 2thd φψφφψ
4 biimp φφψφφψ
5 4 pm2.43d φφψφψ
6 biimpr φφψφψφ
7 5 6 mpd φφψφ
8 7 5 jcai φφψφψ
9 3 8 impbii φψφφψ