Metamath Proof Explorer


Theorem bj-axc16g16

Description: Proof of axc16g from { ax-1 -- ax-7 , axc16 }. (Contributed by BJ, 6-Jul-2021) (Proof modification is discouraged.)

Ref Expression
Assertion bj-axc16g16 x x = y φ z φ

Proof

Step Hyp Ref Expression
1 aevlem x x = y z z = t
2 axc16 z z = t φ z φ
3 1 2 syl x x = y φ z φ