Metamath Proof Explorer


Theorem bj-axtd

Description: This implication, proved from propositional calculus only (hence holding, up to the standard interpretation, in any modal logic), shows that the axiom scheme |- ( A. x ph -> ph ) (modal T) implies the axiom scheme |- ( A. x ph -> E. x ph ) (modal D). See also bj-axdd2 and bj-axd2d . (Contributed by BJ, 16-May-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-axtd x ¬ φ ¬ φ x φ φ x φ x φ

Proof

Step Hyp Ref Expression
1 con2 x ¬ φ ¬ φ φ ¬ x ¬ φ
2 df-ex x φ ¬ x ¬ φ
3 1 2 syl6ibr x ¬ φ ¬ φ φ x φ
4 3 imim2d x ¬ φ ¬ φ x φ φ x φ x φ