Metamath Proof Explorer


Theorem bj-gl4

Description: In a normal modal logic, the modal axiom GL implies the modal axiom (4). Translated to first-order logic, Axiom GL reads |- ( A. x ( A. x ph -> ph ) -> A. x ph ) . Note that the antecedent of bj-gl4 is an instance of the axiom GL, with ph replaced by ( A. x ph /\ ph ) , which is a modality sometimes called the "strong necessity" of ph . (Contributed by BJ, 12-Dec-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-gl4 x x x φ φ x φ φ x x φ φ x φ x x φ

Proof

Step Hyp Ref Expression
1 19.26 x x φ φ x x φ x φ
2 simpr x x φ x φ x φ
3 2 a1i φ x x φ x φ x φ
4 3 anc2ri φ x x φ x φ x φ φ
5 1 4 syl5bi φ x x φ φ x φ φ
6 5 alimi x φ x x x φ φ x φ φ
7 1 biimpi x x φ φ x x φ x φ
8 6 7 imim12i x x x φ φ x φ φ x x φ φ x φ x x φ x φ
9 simpl x x φ x φ x x φ
10 8 9 syl6 x x x φ φ x φ φ x x φ φ x φ x x φ