Metamath Proof Explorer


Theorem bj-gl4

Description: In a normal modal logic, the modal axiom GL implies the modal axiom (4). Translated to first-order logic, Axiom GL reads |- ( A. x ( A. x ph -> ph ) -> A. x ph ) . Note that the antecedent of bj-gl4 is an instance of the axiom GL, with ph replaced by ( A. x ph /\ ph ) , which is a modality sometimes called the "strong necessity" of ph . (Contributed by BJ, 12-Dec-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-gl4
|- ( ( A. x ( A. x ( A. x ph /\ ph ) -> ( A. x ph /\ ph ) ) -> A. x ( A. x ph /\ ph ) ) -> ( A. x ph -> A. x A. x ph ) )

Proof

Step Hyp Ref Expression
1 19.26
 |-  ( A. x ( A. x ph /\ ph ) <-> ( A. x A. x ph /\ A. x ph ) )
2 simpr
 |-  ( ( A. x A. x ph /\ A. x ph ) -> A. x ph )
3 2 a1i
 |-  ( ph -> ( ( A. x A. x ph /\ A. x ph ) -> A. x ph ) )
4 3 anc2ri
 |-  ( ph -> ( ( A. x A. x ph /\ A. x ph ) -> ( A. x ph /\ ph ) ) )
5 1 4 syl5bi
 |-  ( ph -> ( A. x ( A. x ph /\ ph ) -> ( A. x ph /\ ph ) ) )
6 5 alimi
 |-  ( A. x ph -> A. x ( A. x ( A. x ph /\ ph ) -> ( A. x ph /\ ph ) ) )
7 1 biimpi
 |-  ( A. x ( A. x ph /\ ph ) -> ( A. x A. x ph /\ A. x ph ) )
8 6 7 imim12i
 |-  ( ( A. x ( A. x ( A. x ph /\ ph ) -> ( A. x ph /\ ph ) ) -> A. x ( A. x ph /\ ph ) ) -> ( A. x ph -> ( A. x A. x ph /\ A. x ph ) ) )
9 simpl
 |-  ( ( A. x A. x ph /\ A. x ph ) -> A. x A. x ph )
10 8 9 syl6
 |-  ( ( A. x ( A. x ( A. x ph /\ ph ) -> ( A. x ph /\ ph ) ) -> A. x ( A. x ph /\ ph ) ) -> ( A. x ph -> A. x A. x ph ) )