| Step |
Hyp |
Ref |
Expression |
| 1 |
|
19.26 |
⊢ ( ∀ 𝑥 ( ∀ 𝑥 𝜑 ∧ 𝜑 ) ↔ ( ∀ 𝑥 ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜑 ) ) |
| 2 |
|
simpr |
⊢ ( ( ∀ 𝑥 ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜑 ) → ∀ 𝑥 𝜑 ) |
| 3 |
2
|
a1i |
⊢ ( 𝜑 → ( ( ∀ 𝑥 ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜑 ) → ∀ 𝑥 𝜑 ) ) |
| 4 |
3
|
anc2ri |
⊢ ( 𝜑 → ( ( ∀ 𝑥 ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜑 ) → ( ∀ 𝑥 𝜑 ∧ 𝜑 ) ) ) |
| 5 |
1 4
|
biimtrid |
⊢ ( 𝜑 → ( ∀ 𝑥 ( ∀ 𝑥 𝜑 ∧ 𝜑 ) → ( ∀ 𝑥 𝜑 ∧ 𝜑 ) ) ) |
| 6 |
5
|
alimi |
⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( ∀ 𝑥 ( ∀ 𝑥 𝜑 ∧ 𝜑 ) → ( ∀ 𝑥 𝜑 ∧ 𝜑 ) ) ) |
| 7 |
1
|
biimpi |
⊢ ( ∀ 𝑥 ( ∀ 𝑥 𝜑 ∧ 𝜑 ) → ( ∀ 𝑥 ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜑 ) ) |
| 8 |
6 7
|
imim12i |
⊢ ( ( ∀ 𝑥 ( ∀ 𝑥 ( ∀ 𝑥 𝜑 ∧ 𝜑 ) → ( ∀ 𝑥 𝜑 ∧ 𝜑 ) ) → ∀ 𝑥 ( ∀ 𝑥 𝜑 ∧ 𝜑 ) ) → ( ∀ 𝑥 𝜑 → ( ∀ 𝑥 ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜑 ) ) ) |
| 9 |
|
simpl |
⊢ ( ( ∀ 𝑥 ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜑 ) → ∀ 𝑥 ∀ 𝑥 𝜑 ) |
| 10 |
8 9
|
syl6 |
⊢ ( ( ∀ 𝑥 ( ∀ 𝑥 ( ∀ 𝑥 𝜑 ∧ 𝜑 ) → ( ∀ 𝑥 𝜑 ∧ 𝜑 ) ) → ∀ 𝑥 ( ∀ 𝑥 𝜑 ∧ 𝜑 ) ) → ( ∀ 𝑥 𝜑 → ∀ 𝑥 ∀ 𝑥 𝜑 ) ) |