Metamath Proof Explorer


Theorem bj-gl4

Description: In a normal modal logic, the modal axiom GL implies the modal axiom (4). Translated to first-order logic, Axiom GL reads |- ( A. x ( A. x ph -> ph ) -> A. x ph ) . Note that the antecedent of bj-gl4 is an instance of the axiom GL, with ph replaced by ( A. x ph /\ ph ) , which is a modality sometimes called the "strong necessity" of ph . (Contributed by BJ, 12-Dec-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-gl4 ( ( ∀ 𝑥 ( ∀ 𝑥 ( ∀ 𝑥 𝜑𝜑 ) → ( ∀ 𝑥 𝜑𝜑 ) ) → ∀ 𝑥 ( ∀ 𝑥 𝜑𝜑 ) ) → ( ∀ 𝑥 𝜑 → ∀ 𝑥𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 19.26 ( ∀ 𝑥 ( ∀ 𝑥 𝜑𝜑 ) ↔ ( ∀ 𝑥𝑥 𝜑 ∧ ∀ 𝑥 𝜑 ) )
2 simpr ( ( ∀ 𝑥𝑥 𝜑 ∧ ∀ 𝑥 𝜑 ) → ∀ 𝑥 𝜑 )
3 2 a1i ( 𝜑 → ( ( ∀ 𝑥𝑥 𝜑 ∧ ∀ 𝑥 𝜑 ) → ∀ 𝑥 𝜑 ) )
4 3 anc2ri ( 𝜑 → ( ( ∀ 𝑥𝑥 𝜑 ∧ ∀ 𝑥 𝜑 ) → ( ∀ 𝑥 𝜑𝜑 ) ) )
5 1 4 syl5bi ( 𝜑 → ( ∀ 𝑥 ( ∀ 𝑥 𝜑𝜑 ) → ( ∀ 𝑥 𝜑𝜑 ) ) )
6 5 alimi ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( ∀ 𝑥 ( ∀ 𝑥 𝜑𝜑 ) → ( ∀ 𝑥 𝜑𝜑 ) ) )
7 1 biimpi ( ∀ 𝑥 ( ∀ 𝑥 𝜑𝜑 ) → ( ∀ 𝑥𝑥 𝜑 ∧ ∀ 𝑥 𝜑 ) )
8 6 7 imim12i ( ( ∀ 𝑥 ( ∀ 𝑥 ( ∀ 𝑥 𝜑𝜑 ) → ( ∀ 𝑥 𝜑𝜑 ) ) → ∀ 𝑥 ( ∀ 𝑥 𝜑𝜑 ) ) → ( ∀ 𝑥 𝜑 → ( ∀ 𝑥𝑥 𝜑 ∧ ∀ 𝑥 𝜑 ) ) )
9 simpl ( ( ∀ 𝑥𝑥 𝜑 ∧ ∀ 𝑥 𝜑 ) → ∀ 𝑥𝑥 𝜑 )
10 8 9 syl6 ( ( ∀ 𝑥 ( ∀ 𝑥 ( ∀ 𝑥 𝜑𝜑 ) → ( ∀ 𝑥 𝜑𝜑 ) ) → ∀ 𝑥 ( ∀ 𝑥 𝜑𝜑 ) ) → ( ∀ 𝑥 𝜑 → ∀ 𝑥𝑥 𝜑 ) )